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INTRODUCTION 

A FUNDAMENTAL question in the design of finned heat 
exchanger surfaces and electronics packages is how to deter- 
mine the spacing between heat generating plates in a stack 
of fixed volume. When the stack peak temperature (hot spot) 
is fixed, the optimal plate-to-plate spacing corresponds to 
the maximum heat transfer rate from the entire stack to the 
ambient fluid. 

The optimal spacing problem was solved for con- 
figurations where the stack is cooled by natural convection 
[l-6). Stacks cooled by forced convection were optimized 
only in cases where the flow is laminar [7-lo]. The objective 
of this note is to report the optimal plate-to-plate spacing 
when the stack is cooled by turbulent forced convection. 

ANALYSIS 

With reference to Fig. 1, we seek to maximize the overall 
thermal conductance of the stack, q’/(T,,, - T,), by select- 
ing the plate-to-plate spacing D. The method of solution 
is analytical, and consists of(i) estimating the stack-ambient 
thermal conductance in the asymptotic regimes (small D. 
large D), and (ii) intersecting the two asymptotic solutions. 
The accuracy of this method relative to more exact methods 
was demonstrated in ref. [lo], where the flow was laminar. 
This method is even more justified in the case of turbulent 
flow, because of the relatively greater uncertainty built into 
the turbulent heat and fluid flow correlations used for the 
asymptotic regimes. 

In the following analysis, the coolant temperature (T,) 
and the representative order of magnitude of the plate tem- 
perature (T,,,,,) are given. The pressure drop across the stack 
(AP) is fixed, as in applications where several stacks receive 
their coolant from the same plenum. The same analysis holds 
for configurations where the stack is immersed in a free 
stream CJ,, because the effective pressure drop across the 
stack is then AP z (I/2)pU$,, constant. The board thickness 
t is not necessarily negligible! when compared with the board- 
to-board spacing D (see equation (6)). In other words, 
the number of boards in the stack of thickness H is 
n = H/(D + t), where it is assumed that n >> I. 
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FIG. 1. Stack of equidistant heat generating plates cooled by 
turbulent forced convection. 

Small D 
When the board-to-board spacing is sufficiently small, the 

outlet temperature of the coolant is the same as the board 
temperature, and the total rate of heat transfer removed from 
the package is 

q; = ti’cp(Tmax - T,). (1) 

The mass flowrate is h’ = npUD, where U is the mean vel- 
ocity through each D channel with fully developed turbulent 
flow, 

(2) 

The friction factor f depends on the channel Reynolds 
number, as we will see in equation (11). In conclusion, if we 
combine equations (1) and (2) with ti’ = npUD we obtain 
the D + 0 asymptote of the overall thermal conductance : 

(A)_ = s(y’,2. (3) 

D 

Large D 
In the opposite extreme each board is lined by boundary 

layers, while the core of the channel of spacing D is filled by 
coolant of temperature r, and core (outside the boundary 
layers) velocity U, The latter is dictated by the force balance 
on the entire stack with fixed AP, 

HAP = 2ntL (4) 

where ? is the L-averaged shear stress on the board surface. 
In writing equation (4) we have assumed that the board 
thickness is small enough so that the force experienced by 
each board is dominated by skin friction over the L-long 
faces. This assumption is equivalent to writing that in an 
order of magnitude sense, 

:pu:t << 2iL (5) 

which, in view of the definition of average skin friction 
coefficient Cr = i/(pUL/Z), means that we are assuming 

I 

z << 2cr 

Combining equation (4) with the Cr definition we obtain 

(7) 

The total heat transfer rate through one board surface (i.e. 
across one boundary layer) is 

q’, = TL = StLpc,U, (T,,, - T,) (8) 

where ? is the L-averaged heat flux. The Stanton number 
Sf = T/PC, U, (T,,, - 7’J can be evaluated by invoking the 
Colburn analogy between momentum and heat transfer in 
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NOMENCLATURE 

specific heat of coolant [J kg ’ K ‘1 
skin friction coefficient 
plate-to-plate spacing [m] 
hydraulic diameter, 20 [m] 
friction factor 
overall thickness of stack [m] 
length of stack [m] 
mass flowrate through stack [kg mm ’ sm ‘1 
number of plates, H/(D + I) 
Prandtl number 
stack-ambient heat transfer rate [W m- ‘1 
average heat flux [W m ‘1 
Reynolds number, L’D,,‘v 
Reynolds number, CJ,,L/v 
Stanton number 
plate thickness [m] 

T l”ilX plate temperature level [K] 

7, coolant temperature [K] 
C’ mean velocity [m s ‘1 
I/,, free stream velocity [m s- ‘1 
L;, core velocity [m s ‘1. 

Greek symbols 
thermal diffusivity [m’s_ ‘1 

:P pressure difference [N mm ‘1 

p viscosity [kg s- ’ m ‘1 

P density [kg rn-.‘] 
? average wall shear stress [N m ‘1 

Subscripts 
maximum 
optimal. 

CP 

Cf 
D 

.: 
H 
L 
ri?’ 
,* 
Pr 

Q 
4” 
ReDh 
Re,. 
St 
f 

turbulent boundary layer How, 

Sr = ic, PrrZ!? (Pr a 0.5). (9) 

In the end, for the total heat transfer rate removed from the 
stack we write y’ = 2nq’,. and obtain the following asymp- 
totic expression for the overall conductance : 

= e,H Pr-“3 

Intersection of the asymptotic regimes 
Equations (3) and (10) show that the overall conductance 

increases with D when D is small, and decreases when D is 
large. This means that q’/(T,,,- T,) is maximum at an 
optimal intermediate spacing that is of the same order of 
magnitude as the D value obtained by intersecting equations 
(3) and (10). The result of this intersection is given implicitly 

by 

The corresponding maximum value of the overall thermal 
conductance is obtained by substituting D = D,,, in equation 
(10) or equation (3) : 

The inequality sign is a reminder that if q’ is plotted on the 
ordinate and D on the abscissa, the peak of the actual 4’ vs 
D curve is located under the intersection of the asymptotes 
(3) and (IO). The right side of equation (12) represents the 
correct order of magnitude of the maximum overall thermal 
conductance, and can be expected to anticipate within 30% 
the exact value [IO]. 

RESULTS AND CONCLUSIONS 

Smooth surfaces 
Beyond this point we must make certain assumptions 

regarding the values of the friction factor and skin-friction 
coefficient. If all the board surfaces are smooth, we can use 
the standard correlations [I I] 

f= 0.046Re,h’, * (IO4 < Ren, < 106) (13) 

:Cr = 0.037Re; “’ (IO6 < Re,. < IO”) (14) 

where D, = 20, Ren, = 2DU/v and Re, = U, L/v. These 

allow us to relate U and U, to AP, by combining equations 
(2) and (13) for U, and equations (7) and (14) for U, : 

(15) 

(/ 
x 

= 4,25~-4’“r- 1;4 AP(D+t) “‘) 

I 1 P 
(16) 

Combined, equations (13)-( 16) expressJ’and Cr as functions 
of the imposed pressure drop, i.e. functions that can be 
substituted on the right side of equation (I I). The final 
expression for the optimal spacing is 

(17) 

The geometric meaning of this conclusion becomes clearer 
if we estimate the expected order of magnitude of the right 
side of equation (17). First, note that the Ren, range listed 
in equation (13) can be rewritten in terms of AP by using 
equation (I 5) and the assumptions that (I +t/D0p,)4’ ’ ’ 2 1 
and Pr = 0.72 (air) : 

-1 11 
> 0.032. (18) 

Similarly, the Re, range specified in equation (14) can be 
rewritten using equation (16) : 

” > o,038, 
(19) 

Equations (18) and (19) show that the specified ReDh and 
Re, ranges correspond to the same range of the pressure 
drop group BP * L’/,ucc. Taken together, equations (17))( 19) 
show that the slenderness ratio of each board-to-board chan- 
nel (D&L) takes values between approximately 0.003 and 
0.007, and is relatively insensitive to changes in the applied 
pressure difference. 

When the surfaces are smooth cf equations (13), (14). the 
maximum overall conductance expression (12) becomes 

In thecaseofafluid withPrandt1 number oforder 1, equation 
(20) is almost the same as the more general equation (12) 
with the constant 0.57 in place of (Cr/j)‘f”. In conclusion, 
the maximum overall conductance increases almost as AP’ ‘. 
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FIG. 2. The optimal spacing as a function of the pressure 
difference number, the Prandtl number and the plate slender- 

ness ratio. 

Figure 2 shows the optimal spacing calculated by using 
equation (17) for turbulent flow. The corresponding D,,,/L 
result for laminar flow [IO] has been plotted to the left, 

(21) 

The figure shows that when the flow is turbulent D,,,/L 
depends not only on the pressure difference number 
(AP* t2/pa) but also on Pr and t/L. The optimal spacing in 
turbulent flow increases as Pr and t/L increase, and is quite 
sensitive to such changes. 

Stack immersed in u free stream 
Another way of interpreting the information of equation 

(17) and Fig. 2 is to consider a cooling arrangement in which 
specified is not AP but the coolant velocity well upstream of 
the stack, UO. In such an arrangement, the scale of BP across 
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FIG. 3. The optimal spacing as a function of Re, = UoL/v, 
the Prandtl number and the plate slenderness ratio. 
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FIG. 4. The maximum overall stack-ambient thermal con- 
ductance as a function of the imposed pressure difference 

(top), or the free-stream velocity (bottom). 

each channel is of the order of [12] 

AP 2 _:pU;, (22) 
which can be substituted in equations (17) and (21) to obtain 

Do,tlL 
(1+f,Dop,)4,,, E 0.076Pr-6”’ Re;‘:” (turbulent) 

(23) 

D 
2 TZ 3.8Pr- I’4 Re; Iv2 

L 
(laminar). (24) 

The Reynolds number Re, is based on the specified upstream 
velocity and the flow length of the stack, 

Re =?hk 
I. 

v 

The optimal spacings recommended by equations (23), (24) 
are displayed in Fig. 3, which shows that in turbulent flow 
the channel spacing is influenced not only by ReL but also 
by Pr and t/L. 

The maximum overall thermal conductance (20) can also 
be expressed in terms of Re, by using equation (22) : 

The t/Dop, ratio appearing on the right side is given by equa- 
tion (23). The resulting maximum thermal conductance esti- 
mate has been plotted in the lower frame of Fig. 4, next to 
the corresponding curves known for laminar flow. The upper 
frame of Fig. 4 shows the same results by using the pressure 
drop number on the abscissa. The turbulent flow curves were 
obtained by combining equations (20) and (17). 

The interesting conclusion made visible by the two frames 
of Fig. 4 is that the turbulent portion of each curve is, in an 
order of magnitude sense, an extension of the laminar 
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portion. This feature is unlike 111 I:lgs. 2 and 3. where thcrc 
is a definite change in the behavior of D,,,,,.L, as the flop 
regime changes. 
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INTRODUCTION 

THE TRANSPORT equations for the vorticity o and tempera- 
ture T of a line vortex which is diffusing into the sur- 
rounding (ambient temperature) fluid are 

and 

(1) 

At t = 0, the circulation To and thermal energy QII are 
concentrated along the axis of rotation. Solutions to (I) and 
(2) are 

l-0 I.1 

w = 4nz exp i--d 4vt 
(3) 

(4) 

respectively. Equation (3) is given in a number of texts, e.g. 
refs. [l, 21. Equation (4) was given in ref. [3] in the context 
of a line source of heat instantaneously released into an 
infinite solid. At the vortex centre, the vorticity and tem- 

perature are (at time 1) 

and 

(6) 

The distributions for o and Tcan be re-written in normL,ised 
form 

s = exp [ -0.693~~~]. 

where the half-radius R is given by 
1 

& = 0.693. (9) 

The vorticity distribution for vortices in the laminar wake 
(Re, = 140) behind a cylinder was indirectly measured by 
Okude and Matsui [4] and was found to be in reasonable 
agreement with equation (7). To our knowledge, equation 
(8) has not been verified experimentally. This is surprising 


